
Universal distance ratios for two-dimensonal self-avoiding walks: corrected conformal-

invariance predictions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 L969

(http://iopscience.iop.org/0305-4470/23/18/006)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 08:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 23 (1990) L969-L974. Printed in the UK 

LElTER TO THE EDITOR 

Universal distance ratios for two-dimensional self-avoiding 
walks: corrected conformal-invariance predictions 

Sergio Caracciolo-t 11, Andrea Pelissetto$Y and Alan D SokalO+ 
t Scuola Normale Superiore and INFN, Sezione di Pisa, Piazza dei Cavalieri, Pisa 56100, 
Italia 
t Department of Physics, Princeton University, Princeton, NJ 08544 USA 
Q Department of Physics, New York University, 4 Washington Place, New York, NY 10003, 
USA 

Received 25 June 1990 

Abstract. We correct a combinatorial error in the Cardy-Saleur conformal-invariance 
prediction of a universal amplitude ratio for two-dimensional self-avoiding walks. We 
present high-precision Monte Carlo data that confirm the corrected prediction. 

One of the most important results of two-dimensional conformal field theory is the 
c-theorem of Zamolodchikov [ 1-31. Using this theorem, Cardy [4] and Cardy and 
Saleur [ 5 ]  have predicted certain universal amplitude combinations for two- 
dimensional self-avoiding walks. Recently, however, Guttmann and Yang [6] and Lam 
[7] have presented numerical evidence suggesting that the Cardy-Saleur prediction is 
strongly violated. In this letter we resolve the contradiction. We show that the Cardy- 
Saleur logic is correct, but is marred by a combinatorial error involving factors of 2. 
We then present Monte Carlo data-which are consistent with the estimates of 
Guttmann-Yang and Lam, but much more precise-that confirm to high accuracy the 
corrected conformal-invariance prediction. 

The c-theorem [l-31 states that on the space of continuum (renormalized) two- 
dimensional field theories parametrized by coupling constants g = (g ' ,  . . , g" ) ,  there 
exists a scalar function C(g) and a non-degenerate symmetric matrix function G,(g) 
(both of which can be defined explicitly in terms of two-point correlation functions) 
such that: 

(a) at each conformal-invariant renormalization-group fixed point g, (i.e. p ( g * )  = 
0), C(g*> equals the central charge c of the Virasoro algebra in the corresponding 
conformal field theory; 

( b )  in a neighbourhood of g*,  the function C ( g )  is related to the renormalization- 
group p-function p ( g )  by 

(1) C(g) = C k * )  -6 (g  - g*>'G,(g)P'(g) + O ( ( g  - g*)3)  
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(so that in particular C ( g )  is stationary at RG fixed points); 
(c )  for arbitrary g, 

( d )  the change in C ( g )  between fixed points g , ,  and g, ,  connected by the RG 

flow is 

C ( g * 2 ) -  C ( g * , )  = -2 R3(@(0)@(R))"""" dR lo= 
3 
471. 

- - -- 1 r2(@(0)@(r))'""" d2r (4) 

where 0 is the trace of the stress tensor, and the connected correlation functions are 
evaluated at any theory along the RG trajectory running from g*,  to g * 2 ;  

(e)  if the theory at g satisfies reflection positivity (sometimes called 'unitarity') 
[S-lo], then G , ( g )  is positive-definite (so that in particular C ( g )  strictly decreases 
along the RG flow, and is stationary only at RG fixed points). 

We emphasize that statements ( a ) - ( d )  should hold whether or not the theories in 
question are reflection-positive. This is an important point, because the self-avoiding 
walk is not reflection-positive: this can be seen either by direct calculation of the 
two-point function on the lattice [ 1 1 1 ,  or by noting that the relevant representations 
of the Virasoro algebra ( c  = 0, h # 0 [12-141) lie outside the Friedan-Qiu-Shenker [15] 
classification. 

Cardy [4] and Cardy-Saleur [5] apply the c-theorem to an n-vector model near 
its critical point: the continuum-limit Hamiltonian is 

X = X * + t  1 E ( r ) d 2 r + h  1 s ' ( r )d2r  ( 5 )  

where X* is the fixed-point Hamiltonian, and E and s are the energy and spin operators. 
The trace of the stress tensor is 

O ( r )  = 2 T [ y , t E ( r ) + y h h s ' ( r ) ]  (6) 
where y, ,  yh are the RG eigenvalues ( y  = 2 - x where x is the scaling dimension). They 
then apply the sum rule (4): here g , ,  is the O ( n )  fixed point X* and g , ,  is the trivial 
high-temperature fixed point, so the central charges are C ( g , l )  = c( n )  = 1 - 6 / m ( m  + 1 )  
where n = 2 c o s ( ~ / m )  [ 16-18]  and C ( g * 2 )  = 0. It follows that 

1 
371. 

I r2[y: t2( E ( 0 )  E ( r))fohn" + y: h2( SI( 0) SI( r))?" + 2y,yhth( SI( 0) E ( r ) ) ; 7 " ]  d2r  = - C( n) 

(7) 
independent of t, h in the scaling region. Evaluating (7) at h = 0, we obtain 

1 
3T 

y: t2  1 r 2 ( & ( 0 ) ~ ( r ) ) : r n  d2r=-  c ( n ) .  

Differentiating (7) twice with respect to h and then setting h = 0, we obtain 

y:t2 ( r ,  - r2)2 ( s1 (0 ) s ' ( r )~ (r1 )~ (r2 ) )7 'n  d2r  d2r, d2r2+2y; r 2 ( s ' ( 0 ) s ' ( r ) ) ; y  d2r I 
-4ytyd I r ~ ( s ' ( O ) s ' ( r ) E ( r l ) ) ~ ~ " d 2 r d 2 r l  =O. (9) 
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The next step is to translate these continuum expressions onto the lattice. The 
lattice O( n) Hamiltonian is 2 = -/3 E,,, si* sj - h X i  s t ,  where s is an n-component 
isotropic spin normalized to lslz = n ;  the energy operator is E(r)  = si’sj where r =(ij). 
The sum rules (7)-(9) can then be carried over immediately to the lattice, where they 
holdinthel imit  t = p p , - p + O ,  h+0.  

To obtain predictions for self-avoiding walks (SAWS), we use the well known 
representation of the SAW as the n + 0 limit of the O( n) model [ 19-22]. Cardy’s first 
prediction [4] is obtained by letting n + 0 in (8): both sides of (8) vanish at n = 0, but 
extracting the term of order n it is found that 

where p N  is the number of N-step self-avoiding polygons and ( R $ N  is their mean 
bond-weighted squared radius of gyration. This prediction is confirmed numerically 
to a few parts in lo4 [4,23]. 

The Cardy-Saleur prediction [ 5 ]  is obtained by letting n + 0 in (9). The correlation 
functions become sums over self-avoiding walks: all loops disappear, as do the subtrac- 
ted terms in the connected correlations. For example, the quantity (sl(0)sl( r)E ( r l ) ) : , T  
becomes a sum over self-avoiding walks with endpoints at 0 and r and a bond at r , .  
At this point Cardy and Saleur argue that ‘each insertion of E (  r )  can be connected to 
the polymer in two ways, giving rise to factors of 2’. This statement is incorrect: while 
it is true that a bond rl = (ij) can be connected to the walk in two ways, this gives rise 
to two diflerent SAWS: one goes from O+ i + j + r and the other from O +  j +  i 3 r. 
Therefore, in computing the coefficient for any given SAW appearing in the sum over 
all SAWS, no factor of 2 appears. The correct conformal-invariance prediction is therefore 
not 

but rather 

Here ( R : ) N ,  ( R f ) N  and (Rz , )N  are, respectively, the mean-square radius of gyration, 
the mean-square end-to-end distance, and the mean-square distance of a monomer 
from the origin, taken in the ensemble of all N-step SAWS starting at the origin and 
ending anywhere. The eigenvalues y ,  = $ and yh = 2 are known from either Coulomb 
gas [24] or conformal-invariance [13,16] methods. 

Let us define the amplitude ratios 
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These ratios become universal (i.e. dependent only on the spatial dimension d )  in the 
limit N + 03. The ratios AN and BN have long been of interest in polymer physics [25]. 

By enumeration of walks on the square lattice ( N  d 21) and the triangular lattice 
(N  6 15)  together with the usual extrapolation methods, Guttmann and Yang [6] obtain 
the estimates 

A,=0.1396*0.0010 
B, = 0.4375 f 0.0020 

and thus 
F, = 0.0649 f 0.0047 
FL = 0.0024 f 0.0067. 

These estimates disagree with the original Cardy-Saleur prediction by more than 
thirteen error bars, but agree excellently with the corrected prediction. Lam [7] used 
the incomplete-enumeration Monte Carlo algorithm [26,27] to generate walks of length 
up to N = 100 on the square lattice. After extrapolation he finds 

A, = 0.1398 * 0.0005 
B, = 0.4399 f 0.0010 

and thus 
F, = 0.0633 f 0.0024 
FL = -0.0016 f 0.0034 

where the error bars are apparently one standard deviation. (By extrapolating FN 
directly he gets F, = 0.0633 f 0.0010.) 

In both cases, however, one might worry about the possible systematic errors due 
to corrections to scaling, which could be significant for these moderately short walks. 
To test this, we performed a high-precision Monte Carlo study of SAWS on the square 
lattice using much longer walks (250c N S  4000). By far the most efficient aigorithm 
for this purpose is the pivot algorithm, which is able to produce one ‘effectively 
independent’ configuration in a computer time of order N [28]. Using this algorithm 
Madras and Sokal[28] have computed A N  for 200 S N s 10 000 and obtained the very 
precise estimate 

A,=0.14029ri:0.000 12 
(95% confidence interval); corrections to scaling were unobservably small (i.e. much 
smaller than the statistical errors) for N a 2 0 0 .  Here we provide additional data for 
AN, and measure also BA’, FN and F L .  

In table 1 we report the raw data from our runs. The integrated autocorrelation 
time for each observable is always of order 20-40. The error bars are determined by 

Table 1. The results of our runs. Errors are * one standard deviation. 

250 5.25X107 429.83i0.16 3064.7* 1.4 1346.8r0.6 198.20*0.38 0.61 iO.75 
500 5 . 2 5 ~ 1 0 ~  1212.49i0.47 8646.2k4.1 3801.5* 1.8 557.01 * 1.1 -2.1 *2.1 

1000 5.25 X IO’ 3425.1 11 .3  24 429 f 1 1  10739*5.O 1574.1 i 3 . 0  -3.7 * 6.0 
2000 5 . 2 5 ~  lo7 9696.4r5.9 69 023 * 50 30 350* 21 4 8 7 *  14 - 1 0 ~ 2 7  
4000 1.02 X lo7 27 380 5 39 194 8305341 85 7 1 8 5  144 12 702 * 90 46*175 
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Table 2. Our estimates as a function of the length of the walks. Errors (one standard 
deviation) are shown in parentheses. 

N AN B N  6.4 Fk’ 

250 0.140 25 (10) 0.439 47 (32) 0.064 67 (12) 0.000 20 (24) 
500 0.14023 (11) 0.439 67 (33) 0.064 42 (13) -0.000 25 (25) 

1000 0.14021 (11) 0.439 58 (33) 0.064 43 (13) .-O.OOO 15 (25) 
2000 0.140 30 (12) 0.439 71 (35)  0.064 57 (15)  .-O.OOO 14 (28) 
4000 0.140 63 (28) 0.440 00 (84) 0.065 20 (34) 0.000 23 (64) 

standard methods of time-series analysis [28, appendix C], using a self-consistent 
rectangular window of width 15~,,,. The estimates of ( R i ) ,  and (R:),  are in good 
agreement with those of Madras and Sokal [28], but are more precise. 

In table 2 we report the corresponding estimates for the amplitude ratios. Error 
bars on a ratio ( A ) / ( B )  are determined by applying the usual autocorrelation analysis 
to the time series A / ( A )  - B / ( B ) .  We see no statistically significant corrections to 
scaling in these ratios. Averaging all the data, we find 

A ,  = 0.140 26 0.000 1 1  

B, = 0.439 62 rt 0.000 33 

F, = 0.064 54 * 0.000 13 

F L  = -0.000 06 f 0.000 25 

where the error bars are 95% confidence intervals (2a). 
Our results are in perfect agreement with the estimates of Guttmann-Yang and 

Lam, but are more precise. The original Cardy-Saleur prediction is incorrect, but the 
corrected prediction is verified to a few parts in lo4. Conformal invariance is vindi- 
cated?. 
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